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ABSTRACT

EEG-based systems have been the most widely used in the
field of Brain-Computer Interfaces (BCI) for two decades.
Plenty of applications have been proposed from games to
rehabilitation systems. Until recently, EEG recording de-
vices were too expensive for an end-user. Today, several
low-cost alternatives have appeared on the market.

The most sophisticated of these low-cost devices is the
Emotiv Epoc headset. Some studies reported that this de-
vice is suitable for customers in terms of performance.
However, none of the previous studies reported to what
extent the Emotiv headset is working well compared to a
medical system.

The aim of this paper is thus to scientifically compare a
medical system and the Emotiv Epoc headset by deter-
mining their respective performances in the context of a
P300 BCI paradigm. In this study, seven healthy subjects
performed P300 experiments and two different conditions
were studied: sitting on a chair and walking on a treadmill
at constant speed. Results show that the Emotiv headset,
although able to record EEG data and not only artifacts,
is sometimes significantly worse than a medical system.
Those results suggest that the design of a specific low-cost
EEG recording systems for rehabilitation purposes at a low
price is still required.
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1 Introduction

Non-invasive Brain-Computer Interfaces (BCI) have
known a huge development for less than two decades
in terms of performance and varieties of applications.
Actually, a non-invasive BCI can be defined as a device
that enables communication without movement, namely
a direct communication pathway between a human (or

an animal) and an external device. Given its portability,
its relative low-cost and its high temporal resolution
compared to other non-invasive methods such as MEG,
fMRI, fNIRS, ElectroEncephaloGraphy (EEG) is widely
used for BCI purposes [1].

As reviewed by [2], since its beginning, lots of BCI
applications have emerged. They have been used for
communication and control, notably by allowing to control
a mouse or to use a web browser just by thought. Another
main focus was the study of motor substitution or motor
recovery whose main applications were hand grasping [3]
and wheelchair control [4]. Finally, BCls have also
been used to augment interactivity in games by using
multimodality from the EEG signals and the standard
control [5, 6].

Indubitably, one of the most important fields for BCls
is rehabilitation-related applications. Hand grasping-sy
tems were one of the first rehabilitation devices. In 2006,
a BCI commanded the activation or deactivation of grasp-
ing [3]. This approach enables the patient to grasp objects
thanks to Functional Electro Stimulation (FES). Since this
first experiment, this system has been improved for a better
grasping position based on a Steady-State Evoked Potential
(SSVEP) [7].
Simultaneously, a large focus was devoted to wheelchair
control. As described in [4], several strategies have been
proposed: predefined locations or direct control. In a pre-
defined location strategy, the patient is choosing the place
he wants to go by a BCI. Then, thanks to sensors and shared
control [2], all the low-level commands are executed by the
wheelchair control system in order to reach the desired po-
sition. On the other hand, in a direct control, the orieotati
of the wheelchair and the choice of going forward is di-
rectly and quite continuously controlled by the patient- Ob
viously, the latter approach leads to more overhead prob-
lems whereas it is more flexible.



Recently, an original approach has been proposed
regarding BCl-based gait rehabilitation [8]. Given that
non-invasive BCls are only able to produce high-level
commands, the shared control is performed by a Central
Pattern Generator (CPG), which generates a perfectly
periodic gait pattern whose gait-equivalent speed is
controllable. In this proof of concept, a P300 paradigm
including a non-control state detection, i.e. when the sub-
ject does not want to modify his state by avoiding looking
at the screen, was used on a treadmill and results on four
subjects showed the feasibility of such an application.

In [8], it was proposed a possible extension to lower
limb prostheses/orthoses by using a specific emerging and
well-designed VUZIX augmented reality eyewear (Vuzix,
Rochester, NY, USA). This can circumvent the practical
problems resulting from the use of the P300 paradigm
in terms of screen portability by displaying stimuli on a
semi-transparent module containing all the key hardware
elements.

Although all these aspects look promising, one of
the main drawbacks of EEG system is its high cost for
customers. This is why plenty of commercial EEG devices
are now available such as Neurosky, Mindflex, Emotiv
Epoc, etc [9]. Based on usability [9], the best low-cost
EEG device is the Emotiv Epoc headset. However, a
scientific study of their performance is seldom available.

To our knowledge, no scientific comparison of this headset
with a medical system has been done. In the NeuroPhone
project [10], an Emotiv Epoc P300 system is used on a
PDA without showing comparative results. In [11], based
on mental tasks (relaxation and imaging of two types of
pictures), it was reported that an ActiCap medical system
was much better than the Emotiv Epoc. However, the
authors did not compare the performance of both systems
in the same experimental conditions. For instance, the
electrode number and their location were significantly
different. Consequently, the conclusion of this study is
possibly spurious. In a qualitative study [12], the authors
suggested that data provided by both systems are alike
in general, but the signal is cleaner and stronger in the
medical system (G-TEC device). Moreover, none of those
studies has analyzed the impact of gait-related movement
artifacts.

Given our purpose to develop a low-cost and non-
invasive BCl-based active lower limb orthosis [8], this
study is focusing on the quantitative comparison of a four-
state P300 BCI relying on a medical device and the low-
cost Emotiv Epoc headset. This aims at answering ques-
tions of researchers about the relevancy of the Emotiv head-
set [13]. Section 2 details both recording systems. Sec-
tion 3 is devoted to describe the P300 paradigm, the used
pipeline, the experiment conditions and the performance
measure for comparison. Section 4 discusses the results.

2 Acquisition Systems

In this section, both acquisition systems are detailedirThe
main features as well as the electrodes used in this study
(identical for both systems) are given.

21 ANT

The ANT acquisition system (Advanced Neuro Technol-
ogy, ANT, Enschede, The Netherlands) is composed of a
high-density WaveGuard cap system and the correspond-
ing full-band DC amplifier. The WaveGuard cap has 128
Ag/AgCl electrodes (based on the International 10-20 loca-
tions) with shielded wires in order to be less influenced by
exterior noise. Moreover, three different sizes are alsbgla

to adapt as well as possible to the subject’s head specifici-
ties. Regarding the full-band DC amplifier, it can reach a
sampling rate of 2048 Hz.

In our experiment, left ear was chosen as reference instead
of mastoid because of possible pollution from EMG sig-
nals from the neck under walking conditions. Electrode
impedance was measured and maintained undef2@k
each channel using electrode gel.

2.2 Emotiv EPOC

The Emotiv Software Development Kit for research mainly
includes a 14 channel (plus CMS/DRL references, P3/P4
locations) each based on saline sensors. Available chan-
nels (also based on the International 10-20 locations) are
depicted in Figure 1. The headset is completely wireless
and has a large autonomy of 12 hours as announced by the
company. The sampling rate can reach 128 Hz.

In our experiment, all the standard available electrodes of
the Emotiv Epoc headset were used. Electrode impedance
was decreased by using saline liquid until the level reqguire
by the software was reached.

Figure 1. The Emotiv Epoc headset is using 14 different
electrodes in addition to two references.



3 P300 System

This section first details the standard P300 paradigm. Then,
the P300 approach and its pipeline are explained. After-
wards, the experiment and its purpose are presented. Fi-
nally, the performance evaluation method is explained.

3.1 P300 Paradigm

In the space of BCI paradigms, the P300 evoked potential
has been widely used to allow disabled people to commu-
nicate. This involuntary positive potential arises around
300 ms after the user has perceived a relevant and rare
stimulus [14]. Typically, it is generated by ttoeld-ball
paradigm, in which the user is requested to attend to a
random sequence composed of two kind of stimuli with
one stimulus much less frequent than the other one. In
case the infrequent stimulus is relevant to the user and, as-
suming that the subject was focusing on it by, for example,
silently counting it, its actual appearance activates aOP30
waveform in the users EEG, which is mainly located in the
parietal areas.

The most common application is the P300-speller,
which consists in a text editor [15]. In this application, a
6 x 6 matrix, that includes all the alphabet letters as well
as other symbols, is presented to the user on a computer
screen. The detection of the target letter/symbol, i.e. a
trial, is done after a sequence of intensifications where
each row/column is randomly flashed. At the intersection
of the detected P300 responses, the computer is able to
determine which letter/symbol the subject was looking at.
Because the P300 has a low Signal-to-Noise Ratio
mainly due to other brain, muscular and ocular activities,
this procedure is repeated several times and the epoch
corresponding to each row/column is averaged before
classification to obtain better trial classification acecyra

3.2 P300-based Command

In this application, following [8], a four-state BCI was dtu

ied to allow comparison during sitting and walking condi-
tions (in such applications, a 6 x 6 P300-speller is not eas-
ily conceivable due to the quite high distance to the screen.
Additionally, considering Vuzix eyewear for lower limb or-
thoses/prostheses, it is not implementable in practice). B
cause lower limb rehabilitation was proposed in [8], the
screen was composed of two rows and two columns rep-
resenting Low-, Medium- and High-speeds and the Stop
states as depicted in Figure 2.

Providing the EEG signals downsampled at 32 Hz
from a sampling rate of 512 Hz (ANT) or 128 Hz (Emo-
tiv Epoc), the pipeline is composed of several main compo-
nents: atemporal high-pass filter, an xDAWN-based spatial
filter used on the very same electrodes in both systems [16],
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Figure 2. P300 visualization is divided into four states.

an epoch averaging and an Linear Discriminant Analysis
(LDA) classifier using a voting rule for the final decision.
Frequency band of interest was obtained by high-pass fil-
tering the EEG signals at a 1 Hz cutoff frequency through
a 4th order Butterworth filter. Thus, after the downsam-
pling (high cutoff frequency of 16 Hz by Shannon the-
orem), the undesired slow drift in the measurement and
high-frequency noise such as power line interference are
removed [17].

Afterwards, a spatial filter is designed thanks to an xDAWN
algorithm [16]. By linearly combining EEG channels, this
algorithm defines a P300 subspace. When projecting EEG
signals into this subspace, P300 detection is enhanced.
Then, the resulting signal is epoched using a time window
of 600 ms starting immediately after the stimulus. Groups
of two epochs corresponding to a specific row/column were
averaged. The flash, no flash and inter-repetition duration
are respectively 0.2s,0.1sand 1 s.

Finally, a 12-fold Linear Discriminant Analysis classifier
(LDA) is used. Thek-fold approach relies on the division
of the training set int& uniform segments. Thek—1 seg-
ments are used for training the LDA classifier and the test
is performed on the remaining segment. Aftedifferent
training steps, the classifier obtaining the best resulipis
plied to each two-grouped averaged time window giving a
value which represents the distance to an hyperplane sepa-
rating at best the target/non-target classes. For a giian tr

in a voting classifier, the row/column, which has been acti-
vated is determined by summing six consecutive LDA out-
puts (12 repetitions) and by choosing the maximum value.

3.3 Experiment Description

In order to compare the impact on the results due to
gait, the experiment was divided into two sessions each
corresponding to a specific condition: sitting and walking
at 3 km/h on a treadmill, which is a convenient speed for
subjects. To train classifiers and to assess the entirensyste
for each condition separately, each session was composed
of one training set and one test set of 25 trials each (around
12 minutes for each session).

Seven healthy male subjects participated in this ex-
periment with age between 24 and 33 years old. During the
experiment, a 20-inch screen in both conditions was placed



at about 1.5 meter in front of the subject. Subjects were
healthy and did not have any known locomotion-related or
P300 disturbing diseases or handicap.

3.4 Performance Evaluation

For each condition, both systems were assessed based on
their recognition rate on the test set. Additionally, stan-
dard¢-tests were performed using Matlab. As a reminder,
assuming normality, two different populatioA§ and X,

with their meany; » and their standard deviations »,

their respective number of observatioNs and N», the
unilateralt-test of mean values is defined as:

= H1L T M2 1)
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This t-value is following a Student’s distribution with a
degree of freedoniy:
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Because the medical system should have better perfo
mance than the low-cost headset, the hypothHgiss de-
fined as: “The ANT EEG device is inferior or equal to the
Emotiv headset”.H; is thus defined as: “The ANT EEG
device is superior to the Emotiv headset”.

Attention idem assis debout

4 Results

In this section, results on seven subjects, obtained in
two different conditions and for two different hardware
recording systems are given in terms of th#old learning,
training and testing results. Then, the significance ofeéhos
results is provided and discussed.

Globally, as shown in Table 1, the Emotiv Epoc re-
sults are not bad at all for such a low-cost system. In fact,
the performance is far above the chance level of 25 %,
which is consistent with previous studies and responds to
criticisms that this system mainly records muscular and oc-
ular artifacts.

However, as depicted in Figure 3, the Emotiv headset
seems to be worse than the ANT system. Qnfald based
comparisonp-values under sitting and walking conditions
are respectively 4.77 % and 6.12 % indicating relatively
strong results. This induces that the signal-to-nois@rati
seems to be worse in the Emotiv headset than in the ANT
system. Strictly speaking, only the comparison under sit-
ting conditions is significant worse at the 5 % level. On test
sets, results are less strong. This could be due to the aver-
aging included in the P300 pipeline.

While comparing sitting and walking conditionsvalues

are quite similar whatever the hardware EEG device. In a
k-fold learning, although not significant at the 5 % level,
the p-value is relatively small (around 15 %) indicating
that there could be an unfavorable effect of the gait-relate
artifacts on P300 results that needs to be confirmed on a
larger number of subjects. On the testing set, the averaging
procedure makes this effect totally insignificapivalue is
around 50 %).

120 k—fold (sitting) k—fold (walking) Test (sitting) Test (walking)
<>
100 ~—>
80
Q
I
c
2
£ 60
j=2
o
[
(7}
14
40
20
0
& %

Figure 3. This Figure reports average and standard error
values of classification rates under sitting/walking cendi
tions for both EEG recording devices as wellzagalues.
Tests between sitting and walking conditions were similar
with both systems and results are depicted above the double
arrows. The chance level of 25 % is shown by the horizon-
tal line. This concludes that some results are strong.

Finally, although the Emotiv Epoc performance is
quite creditable especially regarding games, this lower-
than-the-benchmark performance could be problematic in
rehabilitation and prosthesis control. For instance, fdr-S
ject 1 in walking conditions, the decrease of performance
could imply that the overall system is not working as de-
sired anymore [8]. This suggests that the design of a
new low-cost EEG headset device dedicated to applications
needing a highly reliable interface, such as rehabilitatio
systems, is somehow indispensable.

5 Conclusion and Future Work
5.1 Conclusion
In conclusion, in this paper, a scientifically quantitative

comparison of a low-cost Emotiv Epoc headset and an
ANT medical/research EEG device is performed. This



Table 1. A comparative study of the Emotiv Epoc headset aadMKT medical EEG device is reported for seven healthy
subjects based on a P300 application under both sitting atidng conditions. Classification rates of thdold learning, the
training and the testing sets are detailed. Globally, tesubvided by the Emotiv Epoc headset seem to be less goodtbse

provided by the ANT medical system.

Hardware ANT (sitting/walking) EMOTIV (sitting/walking)

Subjects k-fold Training set Testing set k—fold Training set Testing set
Subject 1 90 %/85.5 %| 100 %/100 %| 100 %/100 %|| 78.16 %/72.5% 100 %/92 % 84 %/56 %
Subject2| 94.66 %/88 %| 100 %/100 %| 100 %/88 %|| 76.5%/76.2%| 100 %/96 % 92 %/80 %
Subject 3| 94.66 %/86.7 % 100 %/100 %| 100 %/96 %|| 81.3 %/83.3%| 100 %/100 % 84 %/96 %
Subject 4 89 %/80.2 %| 100 %/100 %| 100 %/100 %| 82.63 %/75.3 % 100 %/100 % 92 %/92 %
Subject 5| 79.9 %/77.83 %| 100 %/100 % 96 %/96 %|| 85.4%/81.5%| 100 %/100%| 100 %/88 %
Subject 6| 70.3%/69.7 %| 88 %/100 % 72 %I76 %|| 70.8%/74.2%| 96 %/100 % 72 %I88 %
Subject 7| 81.16 %/79 %| 96 %/100 % 68 %/84 %|| 74.5%/58.3 % 96 %/92 % 52 %/72 %

Mean 85.7 %/81 %| 97.7 %/100 %| 90.9 %/91.4 %|| 78.5%/74.5 %| 98.9 %/97.1 %| 82.3 %/81.7 %
Std 7.7 %/5.5 % 4.5%/0 % | 12.4 %/7.86 % 4.4 %I7 % 2%/3.8%| 13.8%/12%

aims to answer the questions of a lot of BCI researchers
about the relevancy of the Emotiv Epoc [13]. This study
focuses on a standard P300 Brain-Computer Interface for
rehabilitation purposes and possibly for prosthesis cbntr
as proposed in [8].

Globally, results provided by the Emotiv Epoc headset are
consistent with previous applications using it: it records
EEG data and not only muscular or ocular artifacts as crit-
icized by some BCI leaders. This was supported by far
above chance classification rates, although less good than
the ANT system in average. This indicates that it can be
used in non-critical applications such as games.

Some of the comparative results are strong. QOnfald
based comparisop;values under sitting and walking con-
ditions are respectively 4.77 % and 6.12 %, which is prob-
ably due to a higher signal-to-noise ratio of the medical
system. On the test setsyvalues are less strong, which is
probably due to the averaging effect in the P300 pipeline.
Regarding the comparison between sitting and walking
conditions, although none of the results are significant,
some trends emerge but need to be confirmed. Orithe
fold learning, ap-value of 14 % was found indicating that
gait-related artifacts could impact P300 results. However
due to the averaging effect in the testing sets, this effect
seems to disappegs-f/alue of 50%).

5.2 FutureWork

For future work, three main axes can be explored: a larger
number of subjects, other BCI paradigms and the design
of a new low-cost EEG headset. Firstly, some results are
not enough strong to settle the question about the Emotiv
performance. Therefore, a much larger number of subjects
could be used to obtained even clearer results.

Secondly, this study focuses on the P300 speller-like sys-

tem, i.e. inspired from the so-called P300 speller. However
other standard BCI paradigms exist and could be studied to
confirm the results presented in this paper. More specifi-
cally, a SSVEP-based comparison is ongoing.

Thirdly, given the needs for a higher reliability in crit-
ical applications such as rehabilitation or even ortho-
sis/prosthesis control, the design of a new low-cost EEG
headset is required. ldeally, this headset should be light,
have a large autonomy, have performance closer to a medi-
cal system and be relatively cheap.
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